geom/primes/ints.go

82 lines
1.7 KiB
Go
Raw Permalink Normal View History

2019-12-21 12:44:19 +00:00
package primes
import "opslag.de/schobers/geom/ints"
// GreatestCommonDivisor returns the greatest common divisor of a and b.
func GreatestCommonDivisor(a, b int64) int64 { return GCD(a, b) }
// GCD returns the greatest common divisor of a and b.
func GCD(a, b int64) int64 {
factors := Factorize(a)
var i int
var gcd int64 = 1
for _, f := range Factorize(b) {
for ; i < len(factors) && factors[i].Prime < f.Prime; i++ {
}
if i < len(factors) && factors[i].Prime == f.Prime {
var exponent = ints.Min(f.Exponent, factors[i].Exponent)
gcd *= ints.Pow64(f.Prime, int64(exponent))
i++
}
}
return gcd
}
// LeastCommonMultiple returns the least common multiple of a and b.
func LeastCommonMultiple(a, b int64) int64 { return LCM(a, b) }
// LCM returns the least common multiple of a and b.
func LCM(a, b int64) int64 {
factors := Factorize(a)
var i int
var lcm int64 = 1
for _, f := range Factorize(b) {
for i < len(factors) {
var p = factors[i].Prime
if p < f.Prime {
lcm *= p
i++
} else {
break
}
}
var exponent = f.Exponent
if i < len(factors) && factors[i].Prime == f.Prime {
exponent = ints.Max(exponent, factors[i].Exponent)
i++
}
lcm *= ints.Pow64(f.Prime, int64(exponent))
}
for ; i < len(factors); i++ {
f := factors[i]
lcm *= ints.Pow64(f.Prime, int64(f.Exponent))
}
return lcm
}
// RadInt returns the radical of integer n.
func RadInt(n int) int {
if 1 == n {
return 1
}
factors := Factorize(int64(n))
var r int = 1
for _, f := range factors {
r *= int(f.Prime)
}
return r
}
// RadInt64 returns the radical of integer n.
func RadInt64(n int64) int64 {
if 1 == n {
return 1
}
factors := Factorize(n)
var r int64 = 1
for _, f := range factors {
r *= f.Prime
}
return r
}