geom/trianglef.go

94 lines
2.5 KiB
Go
Raw Normal View History

package geom
import (
"math"
)
// TriangleF is defined by three points that describe a 2D triangle.
type TriangleF struct {
Points [3]PointF
}
// TrF is a shorthand method to create a TriangleF.
func TrF(q, r, s PointF) TriangleF {
return TriangleF{Points: [3]PointF{q, r, s}}
}
// Add translates the triangle by point p.
func (t TriangleF) Add(p PointF) TriangleF {
return TriangleF{Points: [3]PointF{
t.Points[0].Add(p),
t.Points[1].Add(p),
t.Points[2].Add(p),
}}
}
// Center gives the average of the three points.
func (t TriangleF) Center() PointF {
return t.Points[0].Add(t.Points[1]).Add(t.Points[2]).Mul(1. / 3)
}
// Contains tests if point p lies in the triangle.
func (t TriangleF) Contains(p PointF) bool {
u, v, w := t.Points[0], t.Points[1], t.Points[2]
const eps = 1e-9
q := 1 / (-v.Y*w.X + u.Y*(-v.X+w.X) + u.X*(v.Y-w.Y) + v.X*w.Y)
r := (u.Y*w.X - u.X*w.Y + (w.Y-u.Y)*p.X + (u.X-w.X)*p.Y) * q
s := (u.X*v.Y - u.Y*v.X + (u.Y-v.Y)*p.X + (v.X-u.X)*p.Y) * q
if r < -eps || r > 1+eps || s < -eps || s > 1+eps || r+s > 1+eps {
return false
}
return true
}
// Inset insets all the points of the triangle towards the center of the triangle with distance f.
func (t TriangleF) Inset(f float64) TriangleF {
center := t.Center()
inset := func(p PointF) PointF {
centered := p.Sub(center)
length := p.Distance(center)
factor := (length - f) / length
return center.Add(centered.Mul(factor))
}
return TriangleF{Points: [3]PointF{
inset(t.Points[0]),
inset(t.Points[1]),
inset(t.Points[2]),
}}
}
// Mul multiplies all the points of the triangle with f.
func (t TriangleF) Mul(f float64) TriangleF {
return TriangleF{Points: [3]PointF{
t.Points[0].Mul(f),
t.Points[1].Mul(f),
t.Points[2].Mul(f),
}}
}
// SmallestAngle returns the smallest/sharpest angle of the triangle.
func (t TriangleF) SmallestAngle() float64 {
u, v, w := t.Points[0], t.Points[1], t.Points[2]
q := math.Acos(w.Sub(u).Norm().Dot(v.Sub(u).Norm()))
r := math.Acos(u.Sub(v).Norm().Dot(w.Sub(v).Norm()))
s := math.Acos(v.Sub(w).Norm().Dot(u.Sub(w).Norm()))
return math.Min(q, math.Min(r, s))
}
// Winding determines the winding of the triangle.
func (t TriangleF) Winding() Winding {
u, v := t.Points[1].Sub(t.Points[0]), t.Points[2].Sub(t.Points[1])
if u.X*v.Y-u.Y*v.X > 0 {
return WindingClockwise
}
return WindingCounterClockwise
}
// Winding describes the order of points.
type Winding bool
const (
WindingClockwise Winding = false
WindingCounterClockwise Winding = true
)