Compare commits
5 Commits
d1d4aec900
...
e01aa3242d
Author | SHA1 | Date | |
---|---|---|---|
e01aa3242d | |||
88ed955ce4 | |||
701ba39cdc | |||
a7a4688687 | |||
e34821ab87 |
13
math.go
13
math.go
@ -6,6 +6,9 @@ func emulate32(f float32, fn func(float64) float64) float32 {
|
||||
return float32(fn(float64(f)))
|
||||
}
|
||||
|
||||
// Pi constant https://oeis.org/A000796
|
||||
const Pi = math.Pi
|
||||
|
||||
// Abs returns the absolute value.
|
||||
func Abs(f float64) float64 {
|
||||
return math.Abs(f)
|
||||
@ -21,11 +24,21 @@ func Atan(f float64) float64 {
|
||||
return math.Atan(f)
|
||||
}
|
||||
|
||||
// Atan2 returns the arc tangent of y/x.
|
||||
func Atan2(y, x float64) float64 {
|
||||
return math.Atan2(y, x)
|
||||
}
|
||||
|
||||
// Atan32 returns the arc tangent of f.
|
||||
func Atan32(f float32) float32 {
|
||||
return float32(math.Atan(float64(f)))
|
||||
}
|
||||
|
||||
// Atan232 returns the arc tangent of y/x.
|
||||
func Atan232(y, x float32) float32 {
|
||||
return float32(math.Atan2(float64(y), float64(x)))
|
||||
}
|
||||
|
||||
// Ceil rounds f up to an natural number.
|
||||
func Ceil(f float64) float64 {
|
||||
return math.Ceil(f)
|
||||
|
12
point.go
12
point.go
@ -64,6 +64,11 @@ func (p Point) DistInt(q Point) int {
|
||||
return ints.SubAbs(p.X, q.X) + ints.SubAbs(p.Y, q.Y)
|
||||
}
|
||||
|
||||
// Dot returns the dot product of p and q.
|
||||
func (p Point) Dot(q Point) int {
|
||||
return p.X*p.X + p.Y*p.Y
|
||||
}
|
||||
|
||||
// In tests if the point p is inside the rectangle r.
|
||||
func (p Point) In(r Rectangle) bool {
|
||||
if p.X < r.Min.X || p.X >= r.Max.X || p.Y < r.Min.Y || p.Y >= r.Max.Y {
|
||||
@ -80,11 +85,16 @@ func (p Point) Less(q Point) bool {
|
||||
return p.Y < q.Y
|
||||
}
|
||||
|
||||
// Mul multiplier the X and Y values of point p with t and returns the result.
|
||||
// Mul multiplies the X and Y values of point p with t and returns the result.
|
||||
func (p Point) Mul(t int) Point {
|
||||
return Pt(p.X*t, p.Y*t)
|
||||
}
|
||||
|
||||
// Mul2D multiplies the X and Y values of point p with x and y and returns the result.
|
||||
func (p Point) Mul2D(x, y int) Point {
|
||||
return Pt(p.X*x, p.Y*y)
|
||||
}
|
||||
|
||||
// Norm returns the point with both X and Y normalized.
|
||||
func (p Point) Norm() Point {
|
||||
return Pt(ints.Norm(p.X), ints.Norm(p.Y))
|
||||
|
29
pointf.go
29
pointf.go
@ -39,9 +39,14 @@ func (p PointF) AngleTo(q PointF) float64 {
|
||||
return a
|
||||
}
|
||||
|
||||
// Atan2 returns the arc tangent of y/x.
|
||||
func (p PointF) Atan2() float64 {
|
||||
return Atan2(p.Y, p.X)
|
||||
}
|
||||
|
||||
// Distance calculates the distance between points p and q.
|
||||
func (p PointF) Distance(q PointF) float64 {
|
||||
return math.Sqrt(p.Distance2(q))
|
||||
return Sqrt(p.Distance2(q))
|
||||
}
|
||||
|
||||
// Distance2 calculates the squared distance between points p and q.
|
||||
@ -101,6 +106,11 @@ func (p PointF) Div(t float64) PointF {
|
||||
return PtF(p.X/t, p.Y/t)
|
||||
}
|
||||
|
||||
// Dot returns the dot product of p and q.
|
||||
func (p PointF) Dot(q PointF) float64 {
|
||||
return p.X*q.X + p.Y*q.Y
|
||||
}
|
||||
|
||||
// In tests if the point p is inside the rectangle r.
|
||||
func (p PointF) In(r RectangleF) bool {
|
||||
if p.X < r.Min.X || p.X >= r.Max.X || p.Y < r.Min.Y || p.Y >= r.Max.Y {
|
||||
@ -132,11 +142,26 @@ func (p PointF) Invert() PointF {
|
||||
return PointF{-p.X, -p.Y}
|
||||
}
|
||||
|
||||
// Mul multiplier the X and Y values of point p with t and returns the result.
|
||||
// Len returns the length of the vector.
|
||||
func (p PointF) Len() float64 {
|
||||
return Sqrt(p.X*p.X + p.Y*p.Y)
|
||||
}
|
||||
|
||||
// Mul multiplies the X and Y values of point p with t and returns the result.
|
||||
func (p PointF) Mul(t float64) PointF {
|
||||
return PtF(p.X*t, p.Y*t)
|
||||
}
|
||||
|
||||
// Mul2D multiplies the X and Y values of point p with x and y and returns the result.
|
||||
func (p PointF) Mul2D(x, y float64) PointF {
|
||||
return PtF(p.X*x, p.Y*y)
|
||||
}
|
||||
|
||||
// Norm returns the normalized vector of x and y.
|
||||
func (p PointF) Norm() PointF {
|
||||
return p.Mul(1 / p.Len())
|
||||
}
|
||||
|
||||
// Rect returns a rectangle starting from point p to given point q
|
||||
func (p PointF) Rect(q PointF) RectangleF {
|
||||
return RectangleF{Min: p, Max: q}
|
||||
|
29
pointf32.go
29
pointf32.go
@ -39,9 +39,14 @@ func (p PointF32) AngleTo(q PointF32) float32 {
|
||||
return a
|
||||
}
|
||||
|
||||
// Atan2 returns the arc tangent of y/x.
|
||||
func (p PointF32) Atan2() float32 {
|
||||
return Atan232(p.Y, p.X)
|
||||
}
|
||||
|
||||
// Distance calculates the distance between points p and q.
|
||||
func (p PointF32) Distance(q PointF32) float32 {
|
||||
return float32(math.Sqrt(float64(p.Distance2(q))))
|
||||
return Sqrt32(p.Distance2(q))
|
||||
}
|
||||
|
||||
// Distance2 calculates the squared distance between points p and q.
|
||||
@ -101,6 +106,11 @@ func (p PointF32) Div(t float32) PointF32 {
|
||||
return PtF32(p.X/t, p.Y/t)
|
||||
}
|
||||
|
||||
// Dot returns the dot product of p and q.
|
||||
func (p PointF32) Dot(q PointF32) float32 {
|
||||
return p.X*q.X + p.Y*q.Y
|
||||
}
|
||||
|
||||
// In tests if the point p is inside the rectangle r.
|
||||
func (p PointF32) In(r RectangleF32) bool {
|
||||
if p.X < r.Min.X || p.X >= r.Max.X || p.Y < r.Min.Y || p.Y >= r.Max.Y {
|
||||
@ -132,11 +142,26 @@ func (p PointF32) Invert() PointF32 {
|
||||
return PointF32{-p.X, -p.Y}
|
||||
}
|
||||
|
||||
// Mul multiplier the X and Y values of point p with t and returns the result.
|
||||
// Len returns the length of the vector.
|
||||
func (p PointF32) Len() float32 {
|
||||
return Sqrt32(p.X*p.X + p.Y*p.Y)
|
||||
}
|
||||
|
||||
// Mul multiplies the X and Y values of point p with t and returns the result.
|
||||
func (p PointF32) Mul(t float32) PointF32 {
|
||||
return PtF32(p.X*t, p.Y*t)
|
||||
}
|
||||
|
||||
// Mul2D multiplies the X and Y values of point p with x and y and returns the result.
|
||||
func (p PointF32) Mul2D(x, y float32) PointF32 {
|
||||
return PtF32(p.X*x, p.Y*y)
|
||||
}
|
||||
|
||||
// Norm returns the normalized vector of x and y.
|
||||
func (p PointF32) Norm() PointF32 {
|
||||
return p.Mul(1 / p.Len())
|
||||
}
|
||||
|
||||
// Rect returns a rectangle starting from point p to given point q
|
||||
func (p PointF32) Rect(q PointF32) RectangleF32 {
|
||||
return RectangleF32{Min: p, Max: q}
|
||||
|
93
polygonf.go
93
polygonf.go
@ -1,5 +1,7 @@
|
||||
package geom
|
||||
|
||||
import "log"
|
||||
|
||||
// PointsF is a set of points.
|
||||
type PointsF []PointF
|
||||
|
||||
@ -11,10 +13,97 @@ type PolygonF struct {
|
||||
Points PointsF
|
||||
}
|
||||
|
||||
// Add creates a new polyqon based on p with one or more extra points q.
|
||||
func (p PolygonF) Add(q ...PointF) PolygonF {
|
||||
// Add adds q as a vector to all points in p.
|
||||
func (p PolygonF) Add(q PointF) PolygonF {
|
||||
var r = p.copy()
|
||||
for i, pt := range r.Points {
|
||||
r.Points[i] = pt.Add(q)
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
func (p PolygonF) copy() PolygonF {
|
||||
var q = PolygonF{make(PointsF, len(p.Points))}
|
||||
copy(q.Points, p.Points)
|
||||
return q
|
||||
}
|
||||
|
||||
// Extend creates a new polygon based on p with one or more extra points q.
|
||||
func (p PolygonF) Extend(q ...PointF) PolygonF {
|
||||
var t = PolygonF{make(PointsF, len(p.Points)+len(q))}
|
||||
copy(t.Points, p.Points)
|
||||
copy(t.Points[len(p.Points):], q)
|
||||
return t
|
||||
}
|
||||
|
||||
// Mul multiplies the points of polygon p with t and returns the result.
|
||||
func (p PolygonF) Mul(t float64) PolygonF {
|
||||
var q = p.copy()
|
||||
for i, pt := range q.Points {
|
||||
q.Points[i] = pt.Mul(t)
|
||||
}
|
||||
return q
|
||||
}
|
||||
|
||||
// Triangulate triangulates the polygon p.
|
||||
func (p PolygonF) Triangulate() []TriangleF {
|
||||
var triangles []TriangleF
|
||||
points := p.copy().Points[:]
|
||||
n := len(points)
|
||||
|
||||
if n > 0 && points[0] == points[n-1] { // remove first point if polygon is closed
|
||||
points = points[1:]
|
||||
n--
|
||||
}
|
||||
|
||||
triangle := func(i int) TriangleF {
|
||||
return TrF(points[(i+n-1)%n], points[i], points[(i+1)%n])
|
||||
}
|
||||
ear := func(i int) (TriangleF, bool) {
|
||||
t := triangle(i)
|
||||
if t.Winding() == WindingCounterClockwise {
|
||||
return TriangleF{}, false
|
||||
}
|
||||
for j := 0; j < n-3; j++ {
|
||||
p := points[(i+2+j)%n]
|
||||
if t.Contains(p) {
|
||||
return TriangleF{}, false
|
||||
}
|
||||
}
|
||||
return t, true
|
||||
}
|
||||
|
||||
for n >= 3 {
|
||||
leastSharp := -1
|
||||
var leastSharpAngle float64
|
||||
for i := range points {
|
||||
if t, ok := ear(i); ok {
|
||||
sharpAngle := t.SmallestAngle()
|
||||
if leastSharp < 0 || sharpAngle > leastSharpAngle {
|
||||
leastSharp = i
|
||||
leastSharpAngle = sharpAngle
|
||||
}
|
||||
}
|
||||
}
|
||||
if leastSharp < 0 {
|
||||
if n >= 3 {
|
||||
log.Println("not fully triangulated")
|
||||
}
|
||||
break
|
||||
}
|
||||
triangles = append(triangles, triangle(leastSharp))
|
||||
points = append(points[:leastSharp], points[leastSharp+1:]...)
|
||||
n = len(points)
|
||||
}
|
||||
return triangles
|
||||
}
|
||||
|
||||
// Reverse reverses the order of the points of polygon p.
|
||||
func (p PolygonF) Reverse() PolygonF {
|
||||
n := len(p.Points)
|
||||
var q = PolygonF{make(PointsF, n)}
|
||||
for i := 0; i < n/2; i++ {
|
||||
q.Points[i], q.Points[n-i-1] = p.Points[n-i-1], p.Points[i]
|
||||
}
|
||||
return q
|
||||
}
|
||||
|
@ -11,10 +11,34 @@ type PolygonF32 struct {
|
||||
Points PointsF32
|
||||
}
|
||||
|
||||
// Add creates a new polyqon based on p with one or more extra points q.
|
||||
func (p PolygonF32) Add(q ...PointF32) PolygonF32 {
|
||||
// Add adds q as a vector to all points in p.
|
||||
func (p PolygonF32) Add(q PointF32) PolygonF32 {
|
||||
var r = p.copy()
|
||||
for i, pt := range r.Points {
|
||||
r.Points[i] = pt.Add(q)
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
func (p PolygonF32) copy() PolygonF32 {
|
||||
var q = PolygonF32{make(PointsF32, len(p.Points))}
|
||||
copy(q.Points, p.Points)
|
||||
return q
|
||||
}
|
||||
|
||||
// Extend creates a new polygon based on p with one or more extra points q.
|
||||
func (p PolygonF32) Extend(q ...PointF32) PolygonF32 {
|
||||
var t = PolygonF32{make(PointsF32, len(p.Points)+len(q))}
|
||||
copy(t.Points, p.Points)
|
||||
copy(t.Points[len(p.Points):], q)
|
||||
return t
|
||||
}
|
||||
|
||||
// Mul multiplies the points of polygon p with t and returns the result.
|
||||
func (p PolygonF32) Mul(t float32) PolygonF32 {
|
||||
var q = p.copy()
|
||||
for i, pt := range q.Points {
|
||||
q.Points[i] = pt.Mul(t)
|
||||
}
|
||||
return q
|
||||
}
|
||||
|
93
trianglef.go
Normal file
93
trianglef.go
Normal file
@ -0,0 +1,93 @@
|
||||
package geom
|
||||
|
||||
import (
|
||||
"math"
|
||||
)
|
||||
|
||||
// TriangleF is defined by three points that describe a 2D triangle.
|
||||
type TriangleF struct {
|
||||
Points [3]PointF
|
||||
}
|
||||
|
||||
// TrF is a shorthand method to create a TriangleF.
|
||||
func TrF(q, r, s PointF) TriangleF {
|
||||
return TriangleF{Points: [3]PointF{q, r, s}}
|
||||
}
|
||||
|
||||
// Add translates the triangle by point p.
|
||||
func (t TriangleF) Add(p PointF) TriangleF {
|
||||
return TriangleF{Points: [3]PointF{
|
||||
t.Points[0].Add(p),
|
||||
t.Points[1].Add(p),
|
||||
t.Points[2].Add(p),
|
||||
}}
|
||||
}
|
||||
|
||||
// Center gives the average of the three points.
|
||||
func (t TriangleF) Center() PointF {
|
||||
return t.Points[0].Add(t.Points[1]).Add(t.Points[2]).Mul(1. / 3)
|
||||
}
|
||||
|
||||
// Contains tests if point p lies in the triangle.
|
||||
func (t TriangleF) Contains(p PointF) bool {
|
||||
u, v, w := t.Points[0], t.Points[1], t.Points[2]
|
||||
const eps = 1e-9
|
||||
q := 1 / (-v.Y*w.X + u.Y*(-v.X+w.X) + u.X*(v.Y-w.Y) + v.X*w.Y)
|
||||
r := (u.Y*w.X - u.X*w.Y + (w.Y-u.Y)*p.X + (u.X-w.X)*p.Y) * q
|
||||
s := (u.X*v.Y - u.Y*v.X + (u.Y-v.Y)*p.X + (v.X-u.X)*p.Y) * q
|
||||
if r < -eps || r > 1+eps || s < -eps || s > 1+eps || r+s > 1+eps {
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Inset insets all the points of the triangle towards the center of the triangle with distance f.
|
||||
func (t TriangleF) Inset(f float64) TriangleF {
|
||||
center := t.Center()
|
||||
inset := func(p PointF) PointF {
|
||||
centered := p.Sub(center)
|
||||
length := p.Distance(center)
|
||||
factor := (length - f) / length
|
||||
return center.Add(centered.Mul(factor))
|
||||
}
|
||||
return TriangleF{Points: [3]PointF{
|
||||
inset(t.Points[0]),
|
||||
inset(t.Points[1]),
|
||||
inset(t.Points[2]),
|
||||
}}
|
||||
}
|
||||
|
||||
// Mul multiplies all the points of the triangle with f.
|
||||
func (t TriangleF) Mul(f float64) TriangleF {
|
||||
return TriangleF{Points: [3]PointF{
|
||||
t.Points[0].Mul(f),
|
||||
t.Points[1].Mul(f),
|
||||
t.Points[2].Mul(f),
|
||||
}}
|
||||
}
|
||||
|
||||
// SmallestAngle returns the smallest/sharpest angle of the triangle.
|
||||
func (t TriangleF) SmallestAngle() float64 {
|
||||
u, v, w := t.Points[0], t.Points[1], t.Points[2]
|
||||
q := math.Acos(w.Sub(u).Norm().Dot(v.Sub(u).Norm()))
|
||||
r := math.Acos(u.Sub(v).Norm().Dot(w.Sub(v).Norm()))
|
||||
s := math.Acos(v.Sub(w).Norm().Dot(u.Sub(w).Norm()))
|
||||
return math.Min(q, math.Min(r, s))
|
||||
}
|
||||
|
||||
// Winding determines the winding of the triangle.
|
||||
func (t TriangleF) Winding() Winding {
|
||||
u, v := t.Points[1].Sub(t.Points[0]), t.Points[2].Sub(t.Points[1])
|
||||
if u.X*v.Y-u.Y*v.X > 0 {
|
||||
return WindingClockwise
|
||||
}
|
||||
return WindingCounterClockwise
|
||||
}
|
||||
|
||||
// Winding describes the order of points.
|
||||
type Winding bool
|
||||
|
||||
const (
|
||||
WindingClockwise Winding = false
|
||||
WindingCounterClockwise Winding = true
|
||||
)
|
12
trianglef_test.go
Normal file
12
trianglef_test.go
Normal file
@ -0,0 +1,12 @@
|
||||
package geom
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestTriangleFSmallestAngle(t *testing.T) {
|
||||
triangle := TrF(PtF(0, 0), PtF(0, 1), PtF(1, 1))
|
||||
assert.InEpsilon(t, .25*Pi, triangle.SmallestAngle(), 1e-9)
|
||||
}
|
Loading…
Reference in New Issue
Block a user