159 lines
2.6 KiB
Go
159 lines
2.6 KiB
Go
package primes
|
|
|
|
import "opslag.de/schobers/geom/ints"
|
|
|
|
var primes = &cache{}
|
|
|
|
const (
|
|
primesPerPage int = 8192
|
|
)
|
|
|
|
// Cache represents the cached state of some pre-calculated prime numbers.
|
|
type Cache interface {
|
|
IsPrime(n int64) bool
|
|
OffsetOfPrime(n int64) int
|
|
Prime(n int) int64
|
|
}
|
|
|
|
// NewCache creates a new prime number cache.
|
|
func NewCache() Cache {
|
|
return &cache{}
|
|
}
|
|
|
|
type cache struct {
|
|
pages []page
|
|
}
|
|
|
|
type page struct {
|
|
primes []int64
|
|
last int64
|
|
}
|
|
|
|
func (c *cache) OffsetOfPrime(n int64) int {
|
|
p := 0
|
|
for {
|
|
if len(c.pages) == p {
|
|
c.generatePage()
|
|
}
|
|
if c.pages[p].last >= n {
|
|
for i := 0; i < primesPerPage; i++ {
|
|
if c.pages[p].primes[i] >= n {
|
|
return i + p*primesPerPage
|
|
}
|
|
}
|
|
}
|
|
p++
|
|
}
|
|
}
|
|
|
|
func (c *cache) Prime(n int) int64 {
|
|
i := n - 1
|
|
p := i / primesPerPage
|
|
for p >= len(c.pages) {
|
|
c.generatePage()
|
|
}
|
|
offset := i % primesPerPage
|
|
return c.pages[p].primes[offset]
|
|
}
|
|
|
|
func (c *cache) IsPrime(n int64) bool {
|
|
if inRange, isPrime := c.isKnownPrime(n); inRange {
|
|
return isPrime
|
|
}
|
|
upper := ints.Sqrt64(n)
|
|
it := NewIteratorFromCache(c)
|
|
for it.Next() {
|
|
p := it.Get()
|
|
if p > upper {
|
|
return true
|
|
}
|
|
if n%p == 0 {
|
|
return false
|
|
}
|
|
}
|
|
panic("out of primes")
|
|
}
|
|
|
|
func (c *cache) generatePage() {
|
|
pageI := len(c.pages)
|
|
c.pages = append(c.pages, page{})
|
|
var p = &c.pages[pageI]
|
|
p.primes = make([]int64, primesPerPage)
|
|
var i int
|
|
var last int64
|
|
if 0 == pageI {
|
|
copy(p.primes, seed)
|
|
i = 20
|
|
last = p.primes[19]
|
|
} else {
|
|
last = c.pages[pageI-1].last
|
|
}
|
|
|
|
wheel := newWheel6(c)
|
|
wheel.resetTo(last)
|
|
|
|
for ; i < primesPerPage; i++ {
|
|
prime := wheel.next()
|
|
for !c.IsPrime(prime) {
|
|
prime = wheel.next()
|
|
}
|
|
p.primes[i] = prime
|
|
}
|
|
p.last = p.primes[primesPerPage-1]
|
|
}
|
|
|
|
func (c *cache) isKnownPrime(n int64) (bool, bool) {
|
|
if 0 == len(c.pages) {
|
|
c.generatePage()
|
|
}
|
|
for _, p := range c.pages {
|
|
if n > p.last {
|
|
continue
|
|
}
|
|
l := len(p.primes)
|
|
offset := 0
|
|
shift := l >> 1
|
|
for shift > 0 {
|
|
pp := p.primes[offset+shift-1]
|
|
if n == pp {
|
|
return true, true
|
|
}
|
|
if n > pp {
|
|
offset += shift
|
|
}
|
|
shift >>= 1
|
|
}
|
|
if n == p.last {
|
|
return true, true
|
|
}
|
|
return true, false
|
|
}
|
|
return false, false
|
|
}
|
|
|
|
// Generate n pre-calculates the first n prime numbers for the default cache.
|
|
func Generate(n int) {
|
|
primes.Prime(n)
|
|
}
|
|
|
|
// N returns the first n prime numbers.
|
|
func N(n int) []int64 {
|
|
Generate(n)
|
|
|
|
ps := make([]int64, n)
|
|
var i = 0
|
|
for _, p := range primes.pages {
|
|
var toCopy = primesPerPage
|
|
if n-i < primesPerPage {
|
|
toCopy = n - i
|
|
}
|
|
i += copy(ps[i:], p.primes[:toCopy])
|
|
}
|
|
return ps
|
|
}
|
|
|
|
// Nth returns the nth prime number.
|
|
func Nth(n int) int64 {
|
|
return primes.Prime(n)
|
|
}
|